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Nonlinear tunneling in a fiber guide array resonator
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A fiber guide array resonator is proposed and shown to obey a nonlinear Schrodinger model in a square well
potential with nonlinearity defocusing inside the well and focusing outside. This model is proved to possess
nonlinear states which ar@ ¢ontinuous extensions of the linear eigenstatgsteimarkably stable up to a
threshold amplitude, ijiunstable at the threshold whemenlinear tunnelingoccurs by gap soliton emission
outside the well. This allows in particular to obtain soliton formation by constant wave irradiation of the fiber
guide array resonator. An explicit analytic expression of the threshold is given in terms of the well size for each
level.
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INTRODUCTION study them in detail. We will report in future studies on the

Fiber guide arrays have attracted much attention becausf(%"y Q|screte case _and we note th_at the gontmuous quel IS
wide applicability as a generic nonlinear Schrodinger

of their extremely rich optical properties resulting from 0 S .

power exchange betwen adjacent wavegu[dgsSuch adi- equation in a squared potential we_II. o

rectional couplinginduces anomalous refraction and diffrac- The nqnlmear states for. NLS W'th.a Qefmlte Sign of the

tion [2]. r_lonlmear_lty have been derlve;d jfl] Wlth interesting sol_u-
Those devices can be worked out in the nonlin@rr) tions having no counterparts in the linear limit. Using differ-

regime and acquire then strikingly unusual properties such e nanlinearities as in Eql) actually.allows us to obtain a
self-modulation for soliton generatiofg], experimentally system whose nonlinear state solutions possess remarkable

demonstrated ifi4], Floquet-Bloch solitons reported i, properties{i) they uniformly tend to the linear eigenstates in

discrete stationary gap solitons experimentally observed "tlhe T{nzll-arl?pllltude I'm't'l(.".)t mey ;'_:llr?dsta%e s:{otlﬁtloms |2|0r
[6], and unusual beam propagation properties discussegPIItUdes below an explicit threshold, a(‘.) at thresho
(theoretically and experimenta)lyn [7]. Lastly, a recent pro- a_mplltude, an instability generates gap SO'”OUS’ emitted out-
posal [8] is to generatadiscrete gap soliton’by boundary side the well, hence realizing a classical nonlinear tunneling

> ; : process.
S:r;“e”sn?hz ftlr? ee (r)rg;]/u(l)t:er]g;ﬁﬁwsaegorvseutg\rzt(;;:grfﬁggagEroach that The threshold values will be explicitely calculated for the

We consider here a fiber array in the nonlinear Kerr re.entire set of nonlinear states in terms of the well heigand
gime [10] when different types of fibers are used: a Self_elgenfrequenues n formulg'i_S) bel_ovy. We shall a_dso dem-
focusing medium with dielectric constasg confines a self- onstrate that the small-amplitude limit maps continuously the

defocusing medium witle, > €;, as sketched in Fig. 1. The nonI|nea_1r states to the linear ones.
injected radiationshown by the arrowscan be tuned to a The fiber guide array resonator then appears as a means to

frequency in the forbidden band of the outside medium thafenerate gap solitons by constant wg@V) input radiation

acts then as a Bragg mirror for the tranverse modulation®t a flux intensity given explicitly in terms of the dimensions

This constitutes oufiber guide array resonator of the dielectri_c constant yariaticna—el. Figure 2 displays a
Following [3], the propagation of laser irradiation along typ|cal numerical simulation of Eqd) that shows the evo-
the directiont is governed by the discrete nonlinear 'U“OP of the fundam.en.tal mode at Fhe threshold for which
Schrédinger equatioNLS) for the envelopesi(n,t) of the _the ln_p_ut envelop_e is indeed CW'I'ke and experiences an
fiber modes. In the continuous limiarge number of fibers instability generating the gap soliton.

and weak coupling it results as the following modglx
=nd whered is the array spacing .

81 82
i+ Gt [P =Vy, X >L,

i+ o= [W29=0, X <L (1)
that hasrepulsiveself-interaction inside the well arattrac- Ananintiniy
tive outside. The positive constaltis the well height pro- //'///'/ x
portional to the dielectric constant differeneg-e€;, and 2.
is its width. FIG. 1. Sketch of the fiber guide array resonator. The dimen-

~Although the physical situation related to the device ofsionless propagation direction is denoted by the variglite trans-
Fig. 1 is that of a discrete system, using the continuouserse(dimensionlesgdirection is the variable. The arrows indi-
model above allows us to derive explicit solutions and tocate the injected radiation.
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Expression5) is a solution of Eq(1) if (necessary con-
dition)

w?= %Az(l + u?), (6)

which links the frequencw to the modulusu of the elliptic
functions. The requiremenb<V for a bound state implies
that the modulusu cannot exceed the following maximum
value wp,

= VI - 1)"2= yp,. (7)

We discovered that it is necessary to work with expressions
of the solution for moduliw>1, performed by means of the

identity o sn(u, w)=sn(uu, 1/u).

ODD SOLUTIONS

FIG. 2. Evolution of the flux densitl =|¢? for the fundamental
zero-mode initial datum at threshold amplitude in the ¢&sé and
L=4. The analytic expression of the input is given by expression
(4) and (13) att=0 for modulusp and amplitudeA given in Eq. . 1
(21). The solution inside the well here is simply the constagt w:Ae_""tsrﬂ(,uA’x, ;), X <L. (8)
=\2V/3.

In the rangeu € [1, um] we define withx,=0 the fol-
Aowing solution inside the well:

In order to obtain sufficient conditions for the €8j and(4)
NONLINEAR STATES to be a solution of Eq(l), we require continuity of the so-
lution and its derivative irx=xL. This provides the admis-

We first need to recall the linear eigenstates that read iinle discrete set of moduli. which, after some algebra

the odd case

must solve
_JAesinkn), X <L 1 1 1\|2v
= {Ae—iwt Sin(kL)e_"(lx‘_L), X =L, ,u,zcnz(b,;>dn2<b,;> = Sﬁ(b,;) [E -1+
k?=Vsird(kL), tan(kL)<O0, (2 - snz< b,lﬂ , 9
72

and in the even case

{Ae‘i‘”t cosky), =L where the functiorb is defined as

- Agiot COS(kL)e—K(M—L)’ |X| =L, b= ,U,A,L. (10
Then the shifd of the tail position for each solution of the
k?=Vcos(kL), tankL)>0, (3)  above equation is given by
for w=k?<V and x¥’=V-w, and for arbitrary amplitudé. 1 2
As learned fronT11], the main tool to derive the nonlin- A sr(b,—) =—. (11
“ cosh{xd)

ear states is to connect a periodic solution inside the well to
a static one-soliton tail outside. We make use of the fundaas for the linear case, one must add a consistency condition
mental solutions of NLS in terms of Jacobi elliptic functions for the signs of the derivatives. It is just a matter of careful

for both symmetric(ever) and antisymmetriqodd) cases reading of all possible cases to obtain the condition
[12]. First, outside the potential well we have the common

i i 1 1 1
soliton tails sr<b,—)cn<b,—)dn(b,—> <0 (12)

[5aiwt o i o

_ K\2€ 2_
p= costix(x-L +d)]’ X=L «=V-w, @) forthe solutionu of Eq. (9) to be acceptable.
which replaces the two evanescent waves of the linear case. EVEN SOLUTIONS
Inside the well, the basic stationary solution reads S )
' y Still with w&[1,uml, we define

Y= pAUSIAX+ X0, 0), X < L. (5) N 1

Here and in the following, thamplitude Ais real-valued and ‘//:Ae_ith"(MA'X*‘ K(;);) <L (13

positive and we define the new constantby A=A’\2. Odd
and even solutions will be obtained by convenient choices obbtained from Eq.(5) by the translationxg=K(1/w)/u,
Xo- whereK is the complete elliptic integral of the first kind. In
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FIG. 3. Dependence of the eigenvalue@ terms of the ampli- v v
tude forV=1 andL=4. Crosses indicate the values of amplitude _ .1 ._o5 ©e0.808 AO.5 0,865

threshold and the dashed curve is the prediction of global threshold 5 10 3 io
(18).

FIG. 4. Plots of the nonlinear staté® and(13) (right) att=0 as

that th tinuit diti ive the admissibl t functions of the transverse variabke(with V=1 andL=4) com-
a Ce.lse’ e cpn inuity con |'|ons give the admissible se O;fared to the linear ones given in E@8) and(3) (left), with ampli-
moduli as solutions of Eq9) with now

tudes and frequencies as indicated. The same vertical scale is used
for linear and nonlinear figures, the horizontal axis is the transverse

1 .
b:MA’L+K<—) (14) X variable.
72

_ ) exactly computed, as shown by the dashed curve in Fig. 3
and the consequent definitiohl) of d. The consistency con- 5nq by the crosses which are the predicted thresholds.
dition (12) still holds here with the above functidn

Note that in both expressioni8) and(13), the parameter
A does represent the maximum value of the amplitude of the LINEAR LIMIT
solution, reached ax=0 for the even stategl3) and atx

To demonstrate in general that the nonlinear spectrum
=K(1/u) for the odd stateg8). 9 3

goes to the linear one in the limAh—0, it is crucial to

evaluate the limits keeping the produsp finite. Actually
NONLINEAR SPECTRUM deﬁning k:A/,LL, we eaSily Obtair(A=A’ \2)

Figure 3 displays the solutions of E¢P) for V=1 and ASTIUA'X, 1/'“)A:OA sin(k), 19

L=4 in the odd and even cases, for which the associated

linear problem possesses three eigenstatieshed linegs ~ Which proves that the nonlinear odd stat& tend to the

The three curves show the dependency of the eigenvalue §fear ones in the limifA— 0. The same property holds natu-

each nonlinear extension of the linear levels in terms of théally for the nonlinear even state€l3) by using sifu

amplitudeA. These eigenvalues are given by the expressiort K(v),v)=cd(u,») and cdu,0)=coqu) together with Eq.

(6) for each solutionu of Eq. (9), in both caseg10) and  (15) above.

(14), equations that are solved numericalike in the linear These results show in particular that tm®nlinear wave

case. number”is the quantityk=A’x and thus that the relatioi®)

Figure 4 shows three examples of linear and nonlineamust be readv?=k?+A?/2 that tends to the linear dispersion
states corresponding to particular choices of amplitudes anklation w?=k? in the small amplitude limit.
frequencies, as indicated on the graphs. These are the plots of
the solutiong8) and(13), compared to the linear eigenfunc-
tions (2) and(3).

There are two fundamental properties of thi®nlinear More interesting is the existence of a threshold amplitude
spectrum”apparent in Fig. 3 that we demonstrate hereafter(or population thresholdbeyond which gap solitons are
First, there is the property to reach the linear spectrum foemitted outside the well, hence realizing a classical nonlinear
vanishing amplitudes, which explains why we have the saméunneling. This is the result of an instability, as described in
number of states as the linear levels. Second, all three curvg¢$3], which takes place as soon as the amplitddis such
are seen to stop at some threshold amplitude which can keat the soliton tail(4) reaches its maximum value ix|

NONLINEAR TUNNELING
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=L, i.e.,d=0. It is worth noting that the nonlinear state so- case the corresponding expressih8) is the constant ampli-
lutions hold only for amplitude# below the threshold; they tude field =A<,
do not describe the solution after the development of the Injecting then in the mediuntas indicated by the arrows
instability. Such an instability has been recently shown to ben Fig. 1) a CW-laser beam afhormalized intensity quxA§
at the origin of gap soliton generation in Bragg gratift$.  constant along the tranversedirection forx € [-L, +L],

In order to derive the analytic expression of the threshold$,ne would generate a gap soliton propagating outside the
positions{As, wg} for each brancho(A), we express the con- \ye| as displayed in Fig. 2. Such simulation can be repro-
tinuity conditions in|x| =L in the casel=0. The threshold is §,,cedad libidumfor the input data constant [rL, +L] and

thus obtained asa parti_cular sol_ution of the eq“a“‘”.‘ . th%xponentially vanishing outside: as soon as the amplitude
state(9) for which both sides vanish altogeth@uccessively exceeds the thresholdl, one obtains tunneling by soliton
for the odd and even stajesmiamely s

emission.
1 1) An important issue is the necessity of nonlinearity sign
Cn2<b,;>dn2<b,;) =0, (16) change. When the whole array presents an attra¢tbeis-

ing) nonlinearity, similar states are defined in terms of Jacobi
oV 1 cn functions[11]. We have observed on numerical simula-
X (1+u?) - Snz(b,—) =0, (17)  tions that they experience modulational instability largely be-
K fore reaching the threshold amplitude. In the other case when
whereb is given by Eq(10) for the odd solutions and by Eq. the whole medium is defocusing, the outside tails are of
(14) for the even ones. cosech-type11], which allows to match any amplitude of
It is then a matter of algebraic manipulations to demon-+the nonlinear state, thus implying overall stabilino thresh-
strate that the solution\s, us} of the above equations glo- old and no gap soliton generatigjust like in the linear case.

bally satisfy The proposed nonlinearity sign change is thus a means for
2V ensuring a threshold for soliton generation and for stabilizing
Al= 2+ 2 =2(V-wy, (18)  the nonlinear states below the threshold.
S
where g is obtained by solving for the odd case
v 1 PERSPECTIVES AND CONCLUSION
snz(L,uS V w2+ 2;3) =1 (19 We have so far demonstrated the existencénoflinear
® eigenstates,’exact solutions of the NLS modél), that are
and for the even case remarkably stablénumerical simulations did not show any
v 1\ 1 deviation from the exact expressions up to times when nu-
SI’]Z(L,U,S\ | ——+ K(—),—) =1. (200  merical errors become sensible, i.e.®1® 10* for our
Mst2 Ms/ Ms

schemeg as soon as their amplitudes do not exceed a thresh-

Note that the solutionA,, ud} of these equation must obey old explicitly evaluated in terms of the well height for each

requiremeni7), which is checkedh posteriori mode. These states reproduce exactly, in the small-amplitude
The dashed curve of Fig. 3 is the plot of H48) for V  limit, the usual eigenstates of the Schrodinger equation in a

=1 andL=4, and the crosses are obtained by solving Eqspotential well. The approach applies straightforwardly to a

(19) and(20) numerically. model where the inside of the well would obey the linear
The above procedure does not furnish the threshold coiSchrodinger equation.

responding to the fundamental level. Indeed, it misses the At threshold amplitude, anonlinear tunneling(macro-
particular solution scopic, classicaloccurs by the emission of gap solitons out-

side the well. This generic property shows that the proposed
us=1 A§ - gv, (21) fiber guide array resonator will act agiap soliton generator
‘ 3 under CW irradiation, and that the ouput signal will switch at
threshold amplitude.

which is effectively a solution of Eq¢16) and(17) from the Although the present formalism has been developed for

property continuous envelopgtarge number of fiber guides and weak
) 1) 1\ _ transverse coupling preliminary numerical simulations of
lim{sna+K|=)—=Jr=1 (22 the discrete case do show gap soliton formation. An interest-
. . . ing issue is then the discrete version of the nonlinear states.
for any r_eal-vazlueczh. In that case, thédispersion relation” In future studies we will explore the important question of
(6) provides ws=A;. Note that the threshold amplitud®  the analytical proof of the stability of those states, including
does not depend on the width. 2f the well. the mathematical derivation of the instability criterion at

threshold amplitude. Note finally that, in the threshold re-
gions, the states are degenerated: two solutions coexist at the

This last solution is particularly interesting in view of same frequency with slightly different amplitudes, as seen in
applications to our fiber guide array device. Indeed, in thafig. 3.

SOLITON GENERATOR
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