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A fiber guide array resonator is proposed and shown to obey a nonlinear Schrödinger model in a square well
potential with nonlinearity defocusing inside the well and focusing outside. This model is proved to possess
nonlinear states which are i) continuous extensions of the linear eigenstates, ii) remarkably stable up to a
threshold amplitude, iii) unstable at the threshold wherenonlinear tunnelingoccurs by gap soliton emission
outside the well. This allows in particular to obtain soliton formation by constant wave irradiation of the fiber
guide array resonator. An explicit analytic expression of the threshold is given in terms of the well size for each
level.
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INTRODUCTION

Fiber guide arrays have attracted much attention because
of their extremely rich optical properties resulting from
power exchange betwen adjacent waveguides[1]. Such adi-
rectional couplinginduces anomalous refraction and diffrac-
tion [2].

Those devices can be worked out in the nonlinear(Kerr)
regime and acquire then strikingly unusual properties such as
self-modulation for soliton generation[3], experimentally
demonstrated in[4], Floquet-Bloch solitons reported in[5],
discrete stationary gap solitons experimentally observed in
[6], and unusual beam propagation properties discussed
(theoretically and experimentally) in [7]. Lastly, a recent pro-
posal [8] is to generatediscrete gap solitonsby boundary
driving a fiber guide arrayabove the cutoff, an approach that
uses the theory of nonlinear supratransmission[9].

We consider here a fiber array in the nonlinear Kerr re-
gime [10] when different types of fibers are used: a self-
focusing medium with dielectric constante1 confines a self-
defocusing medium withe2.e1, as sketched in Fig. 1. The
injected radiation(shown by the arrows) can be tuned to a
frequency in the forbidden band of the outside medium that
acts then as a Bragg mirror for the tranverse modulation.
This constitutes ourfiber guide array resonator.

Following [3], the propagation of laser irradiation along
the direction t is governed by the discrete nonlinear
Schrödinger equation(NLS) for the envelopescsn,td of the
fiber modes. In the continuous limit(large number of fibers
and weak coupling), it results as the following model(x
=nd whered is the array spacing):

ict + cxx + ucu2c = Vc, uxu . L,

ict + cxx − ucu2c = 0, uxu , L s1d

that hasrepulsiveself-interaction inside the well andattrac-
tive outside. The positive constantV is the well height pro-
portional to the dielectric constant differencee2−e1, and 2L
is its width.

Although the physical situation related to the device of
Fig. 1 is that of a discrete system, using the continuous
model above allows us to derive explicit solutions and to

study them in detail. We will report in future studies on the
fully discrete case and we note that the continuous model is
of wide applicability as a generic nonlinear Schrödinger
equation in a squared potential well.

The nonlinear states for NLS with a definite sign of the
nonlinearity have been derived in[11] with interesting solu-
tions having no counterparts in the linear limit. Using differ-
ent nonlinearities as in Eq.(1) actually allows us to obtain a
system whose nonlinear state solutions possess remarkable
properties:(i) they uniformly tend to the linear eigenstates in
the small-amplitude limit,(ii ) they are stable solutions for
amplitudes below an explicit threshold, and(iii ) at threshold
amplitude, an instability generates gap solitons, emitted out-
side the well, hence realizing a classical nonlinear tunneling
process.

The threshold values will be explicitely calculated for the
entire set of nonlinear states in terms of the well heightV and
eigenfrequencies in formula(18) below. We shall also dem-
onstrate that the small-amplitude limit maps continuously the
nonlinear states to the linear ones.

The fiber guide array resonator then appears as a means to
generate gap solitons by constant wave(CW) input radiation
at a flux intensity given explicitly in terms of the dimensions
of the dielectric constant variatione2−e1. Figure 2 displays a
typical numerical simulation of Eq.(1) that shows the evo-
lution of the fundamental mode at the threshold for which
the input envelope is indeed CW-like and experiences an
instability generating the gap soliton.

FIG. 1. Sketch of the fiber guide array resonator. The dimen-
sionless propagation direction is denoted by the variablet, the trans-
verse(dimensionless) direction is the variablex. The arrows indi-
cate the injected radiation.
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NONLINEAR STATES

We first need to recall the linear eigenstates that read in
the odd case

c = HAe−ivt sinskxd, uxu ø L

Ae−ivt sinskLde−ksuxu−Ld, uxu ù L,

k2 = V sin2skLd, tanskLd , 0, s2d

and in the even case

c = HAe−ivt cosskxd, uxu ø L

Ae−ivt cosskLde−ksuxu−Ld, uxu ù L,

k2 = V cos2skLd, tanskLd . 0, s3d

for v=k2,V andk2=V−v, and for arbitrary amplitudeA.
As learned from[11], the main tool to derive the nonlin-

ear states is to connect a periodic solution inside the well to
a static one-soliton tail outside. We make use of the funda-
mental solutions of NLS in terms of Jacobi elliptic functions
for both symmetric(even) and antisymmetric(odd) cases
[12]. First, outside the potential well we have the common
soliton tails

c =
kÎ2e−ivt

coshfksuxu− L + ddg
, uxu ù L, k2 = V − v, s4d

which replaces the two evanescent waves of the linear case.
Inside the well, the basic stationary solution reads

c = mAe−ivtsnsA8x + x0,md, uxu ø L. s5d

Here and in the following, theamplitude Ais real-valued and
positive and we define the new constantA8 by A=A8Î2. Odd
and even solutions will be obtained by convenient choices of
x0.

Expression(5) is a solution of Eq.(1) if (necessary con-
dition)

v2 =
1

2
A2s1 + m2d, s6d

which links the frequencyv to the modulusm of the elliptic
functions. The requirementv,V for a bound state implies
that the modulusm cannot exceed the following maximum
valuemm:

m ø s2V/A2 − 1d1/2 = mm. s7d

We discovered that it is necessary to work with expressions
of the solution for modulim.1, performed by means of the
identity m snsu, md=snsmu, 1/md.

ODD SOLUTIONS

In the rangem [ f1, mmg we define withx0=0 the fol-
lowing solution inside the well:

c = Ae−ivtsnSmA8x,
1

m
D, uxu ø L. s8d

In order to obtain sufficient conditions for the set(8) and(4)
to be a solution of Eq.(1), we require continuity of the so-
lution and its derivative inx= ±L. This provides the admis-
sible discrete set of modulim which, after some algebra,
must solve

m2cn2Sb,
1

m
Ddn2Sb,

1

m
D = sn2Sb,

1

m
DF2V

A2 − s1 + m2d

− sn2Sb,
1

m
DG , s9d

where the functionb is defined as

b = mA8L. s10d

Then the shiftd of the tail position for each solutionm of the
above equation is given by

AUsnSb,
1

m
DU =

kÎ2

coshskdd
. s11d

As for the linear case, one must add a consistency condition
for the signs of the derivatives. It is just a matter of careful
reading of all possible cases to obtain the condition

snSb,
1

m
DcnSb,

1

m
DdnSb,

1

m
D , 0 s12d

for the solutionm of Eq. (9) to be acceptable.

EVEN SOLUTIONS

Still with m[ f1,mmg, we define

c = Ae−ivtsnXmA8x + KS 1

m
D,

1

m
C, uxu , L s13d

obtained from Eq.(5) by the translationx0=Ks1/md /m,
whereK is the complete elliptic integral of the first kind. In

FIG. 2. Evolution of the flux densityF= ucu2 for the fundamental
zero-mode initial datum at threshold amplitude in the caseV=1 and
L=4. The analytic expression of the input is given by expressions
(4) and (13) at t=0 for modulusm and amplitudeA given in Eq.
(21). The solution inside the well here is simply the constantAs

=Î2V/3.
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that case, the continuity conditions give the admissible set of
moduli as solutions of Eq.(9) with now

b = mA8L + KS 1

m
D s14d

and the consequent definition(11) of d. The consistency con-
dition (12) still holds here with the above functionb.

Note that in both expressions(8) and (13), the parameter
A does represent the maximum value of the amplitude of the
solution, reached atx=0 for the even states(13) and atx
=Ks1/md for the odd states(8).

NONLINEAR SPECTRUM

Figure 3 displays the solutions of Eq.(9) for V=1 and
L=4 in the odd and even cases, for which the associated
linear problem possesses three eigenstates(dashed lines).
The three curves show the dependency of the eigenvalue of
each nonlinear extension of the linear levels in terms of the
amplitudeA. These eigenvalues are given by the expression
(6) for each solutionm of Eq. (9), in both cases(10) and
(14), equations that are solved numerically(like in the linear
case).

Figure 4 shows three examples of linear and nonlinear
states corresponding to particular choices of amplitudes and
frequencies, as indicated on the graphs. These are the plots of
the solutions(8) and(13), compared to the linear eigenfunc-
tions (2) and (3).

There are two fundamental properties of this“nonlinear
spectrum”apparent in Fig. 3 that we demonstrate hereafter.
First, there is the property to reach the linear spectrum for
vanishing amplitudes, which explains why we have the same
number of states as the linear levels. Second, all three curves
are seen to stop at some threshold amplitude which can be

exactly computed, as shown by the dashed curve in Fig. 3
and by the crosses which are the predicted thresholds.

LINEAR LIMIT

To demonstrate in general that the nonlinear spectrum
goes to the linear one in the limitA→0, it is crucial to
evaluate the limits keeping the productAm finite. Actually
definingk=A8m, we easily obtainsA=A8Î2d

AsnsmA8x,1/md ,
A→0

A sinskxd, s15d

which proves that the nonlinear odd states(8) tend to the
linear ones in the limitA→0. The same property holds natu-
rally for the nonlinear even states(13) by using sn(u
+Ksnd ,n)=cdsu,nd and cdsu,0d=cossud together with Eq.
(15) above.

These results show in particular that the“nonlinear wave
number” is the quantityk=A8m and thus that the relation(6)
must be readv2=k2+A2/2 that tends to the linear dispersion
relationv2=k2 in the small amplitude limit.

NONLINEAR TUNNELING

More interesting is the existence of a threshold amplitude
(or population threshold) beyond which gap solitons are
emitted outside the well, hence realizing a classical nonlinear
tunneling. This is the result of an instability, as described in
[13], which takes place as soon as the amplitudeA is such
that the soliton tail(4) reaches its maximum value inuxu

FIG. 3. Dependence of the eigenvaluesv in terms of the ampli-
tude for V=1 andL=4. Crosses indicate the values of amplitude
threshold and the dashed curve is the prediction of global threshold
(18).

FIG. 4. Plots of the nonlinear states(8) and(13) (right) at t=0 as
functions of the transverse variablex (with V=1 andL=4) com-
pared to the linear ones given in Eqs.(2) and(3) (left), with ampli-
tudes and frequencies as indicated. The same vertical scale is used
for linear and nonlinear figures, the horizontal axis is the transverse
x variable.
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=L, i.e., d=0. It is worth noting that the nonlinear state so-
lutions hold only for amplitudesA below the threshold; they
do not describe the solution after the development of the
instability. Such an instability has been recently shown to be
at the origin of gap soliton generation in Bragg gratings[14].

In order to derive the analytic expression of the thresholds
positionshAs,vsj for each branchvsAd, we express the con-
tinuity conditions inuxu =L in the cased=0. The threshold is
thus obtained as a particular solution of the equation for the
state(9) for which both sides vanish altogether(successively
for the odd and even states), namely

cn2Sb,
1

m
Ddn2Sb,

1

m
D = 0, s16d

2V

A2 − s1 + m2d − sn2Sb,
1

m
D = 0, s17d

whereb is given by Eq.(10) for the odd solutions and by Eq.
(14) for the even ones.

It is then a matter of algebraic manipulations to demon-
strate that the solutionshAs,msj of the above equations glo-
bally satisfy

As
2 =

2V

2 + ms
2 = 2sV − vsd, s18d

wherems is obtained by solving for the odd case

sn2SLmsÎ V

ms
2 + 2

,
1

ms
D = 1, s19d

and for the even case

sn2XLmsÎ V

ms
2 + 2

+ KS 1

ms
D,

1

ms
C = 1. s20d

Note that the solutionshAs,msj of these equation must obey
requirement(7), which is checkeda posteriori.

The dashed curve of Fig. 3 is the plot of Eq.(18) for V
=1 andL=4, and the crosses are obtained by solving Eqs.
(19) and (20) numerically.

The above procedure does not furnish the threshold cor-
responding to the fundamental level. Indeed, it misses the
particular solution

ms = 1, As
2 =

2

3
V, s21d

which is effectively a solution of Eqs.(16) and(17) from the
property

lim
m→1

HsnXa + KS 1

m
D,

1

m
CJ = 1 s22d

for any real-valueda. In that case, the“dispersion relation”
(6) providesvs

2=As
2. Note that the threshold amplitudeAs

does not depend on the width 2L of the well.

SOLITON GENERATOR

This last solution is particularly interesting in view of
applications to our fiber guide array device. Indeed, in that

case the corresponding expression(13) is the constant ampli-
tude fieldc=Ase

−ivst.
Injecting then in the medium(as indicated by the arrows

in Fig. 1) a CW-laser beam of(normalized) intensity fluxAs
2

constant along the tranversex direction for x [ f−L , +Lg,
one would generate a gap soliton propagating outside the
well, as displayed in Fig. 2. Such simulation can be repro-
ducedad libidumfor the input data constant inf−L , +Lg and
exponentially vanishing outside: as soon as the amplitude
exceeds the thresholdAs, one obtains tunneling by soliton
emission.

An important issue is the necessity of nonlinearity sign
change. When the whole array presents an attractive(focus-
ing) nonlinearity, similar states are defined in terms of Jacobi
cn functions[11]. We have observed on numerical simula-
tions that they experience modulational instability largely be-
fore reaching the threshold amplitude. In the other case when
the whole medium is defocusing, the outside tails are of
cosech-type[11], which allows to match any amplitude of
the nonlinear state, thus implying overall stability(no thresh-
old and no gap soliton generation) just like in the linear case.
The proposed nonlinearity sign change is thus a means for
ensuring a threshold for soliton generation and for stabilizing
the nonlinear states below the threshold.

PERSPECTIVES AND CONCLUSION

We have so far demonstrated the existence of“nonlinear
eigenstates,”exact solutions of the NLS model(1), that are
remarkably stable(numerical simulations did not show any
deviation from the exact expressions up to times when nu-
merical errors become sensible, i.e., 103 to 104 for our
scheme) as soon as their amplitudes do not exceed a thresh-
old explicitly evaluated in terms of the well height for each
mode. These states reproduce exactly, in the small-amplitude
limit, the usual eigenstates of the Schrödinger equation in a
potential well. The approach applies straightforwardly to a
model where the inside of the well would obey the linear
Schrödinger equation.

At threshold amplitude, anonlinear tunneling(macro-
scopic, classical) occurs by the emission of gap solitons out-
side the well. This generic property shows that the proposed
fiber guide array resonator will act as agap soliton generator
under CW irradiation, and that the ouput signal will switch at
threshold amplitude.

Although the present formalism has been developed for
continuous envelopes(large number of fiber guides and weak
transverse coupling), preliminary numerical simulations of
the discrete case do show gap soliton formation. An interest-
ing issue is then the discrete version of the nonlinear states.

In future studies we will explore the important question of
the analytical proof of the stability of those states, including
the mathematical derivation of the instability criterion at
threshold amplitude. Note finally that, in the threshold re-
gions, the states are degenerated: two solutions coexist at the
same frequency with slightly different amplitudes, as seen in
Fig. 3.
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